Differential excitability and modulation of striatal medium spiny neuron dendrites.
نویسندگان
چکیده
The loss of striatal dopamine (DA) in Parkinson's disease (PD) models triggers a cell-type-specific reduction in the density of dendritic spines in D(2) receptor-expressing striatopallidal medium spiny neurons (D(2) MSNs). How the intrinsic properties of MSN dendrites, where the vast majority of DA receptors are found, contribute to this adaptation is not clear. To address this question, two-photon laser scanning microscopy (2PLSM) was performed in patch-clamped mouse MSNs identified in striatal slices by expression of green fluorescent protein (eGFP) controlled by DA receptor promoters. These studies revealed that single backpropagating action potentials (bAPs) produced more reliable elevations in cytosolic Ca(2+) concentration at distal dendritic locations in D(2) MSNs than at similar locations in D(1) receptor-expressing striatonigral MSNs (D(1) MSNs). In both cell types, the dendritic Ca(2+) entry elicited by bAPs was enhanced by pharmacological blockade of Kv4, but not Kv1 K(+) channels. Local application of DA depressed dendritic bAP-evoked Ca(2+) transients, whereas application of ACh increased these Ca(2+) transients in D(2) MSNs, but not in D(1) MSNs. After DA depletion, bAP-evoked Ca(2+) transients were enhanced in distal dendrites and spines in D(2) MSNs. Together, these results suggest that normally D(2) MSN dendrites are more excitable than those of D(1) MSNs and that DA depletion exaggerates this asymmetry, potentially contributing to adaptations in PD models.
منابع مشابه
Peering into the Dendritic Machinery of Striatal Medium Spiny Neurons
Striatal medium spiny neurons are principal players in the basal ganglia macrocircuits implicated in an astonishing array of psychomotor disorders, including Parkinson's disease, schizophrenia, Huntington's disease, and drug abuse. Using an elegant combination of 2-photon laser scanning microscopy and 2-photon uncaging of glutamate, Carter and Sabatini (this issue of Neuron) provide our first g...
متن کاملEffects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron.
Dopaminergic modulation produces a variety of functional changes in the principal cell of the striatum, the medium spiny neuron (MSN). Using a 189-compartment computational model of a ventral striatal MSN, we simulated whole cell D1- and D2-receptor-mediated modulation of both intrinsic (sodium, calcium, and potassium) and synaptic currents (AMPA and NMDA). Dopamine (DA) modulations in the mode...
متن کاملDopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons.
Gamma-aminobutyric acid (GABA)-containing medium spiny neurons constitute approximately 90% of the neuronal population in the neostriatum (caudate and putamen) and play an important role in motor programming. Cortical glutamatergic afferents provide the main excitatory drive for these neurons, whereas nigral dopaminergic neurons play a crucial role in regulating their activity. To further inves...
متن کاملD2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade.
In spite of the recognition that striatal D(2) receptors are critical determinants in a variety of psychomotor disorders, the cellular mechanisms by which these receptors shape neuronal activity have remained a mystery. The studies presented here reveal that D(2) receptor stimulation in enkephalin-expressing medium spiny neurons suppresses transmembrane Ca(2+) currents through L-type Ca(2+) cha...
متن کاملFeedforward and feedback inhibition in neostriatal GABAergic spiny neurons.
There are two distinct inhibitory GABAergic circuits in the neostriatum. The feedforward circuit consists of a relatively small population of GABAergic interneurons that receives excitatory input from the neocortex and exerts monosynaptic inhibition onto striatal spiny projection neurons. The feedback circuit comprises the numerous spiny projection neurons and their interconnections via local a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 45 شماره
صفحات -
تاریخ انتشار 2008